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The present status of the work on the application of the stochastic quantization 
procedure is reviewed. A compact mathematical introduction to the basic 
notions of random processes such as Markov processes, Martingales and 
Fokker-Planck equations is presented. The stochastic quantization procedure is 
explained in much detail and it is found to possess remarkable features which 
can not be achieved within the conventional framework of quantum theory. 
This admits us to give systematic analyses of irreversible quantum dynamics of 
dissipative systems and the vacuum tunneling phenomena in non-Abelian gauge 
theory. 

PROLOGUE 

About ten years ago Nelson (1966, 1967) proposed a probability theo- 
retical framework of quantum mechanics which is now frequently called 
stochastic quantization procedure. This framework, on the one hand, may 
have some bearing on academic problems such as hidden variables and the 
philosophical foundation of quantum theory (Takabayasi, 1977) and, on 
the other hand, it will find many applications in various fields of quantum 
physics. 

This article is written mainly to give a detailed explanation of the 
present status of the work on the application of the stochastic quantization 
procedure and some developments related to it which I have made since I 
encountered Nelson's book (Nelson, 1967) in 1974. 

The stochastic quantization procedure has remarkable features which 
cannot be obtained within the framework of conventional quantum 
theory: Firstly it relies on neither Hamiltonian nor Lagrangean but on the 
equation of motion in the generalized sense. So it seems applicable to the 
wider class of dynamical systems, that is, not only to nondissipative 
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(conservative) systems but also to dissipative (nonconservative) ones. Sec- 
ondly one can realize explicitly the behavior of quantized coordinate 
variables or quantized field variables even when the system is in its energy 
eigenstate. 

Those properties seem adequate in investigating the quantum 
mechanical description of dynamical systems interacting with chaotic 
thermal environments, and also the detailed time-dependent description of 
tunneling phenomena. 

In the present article, making full use of the above nice properties of 
the stochastic quantization, we give systematic analyses of irreversible 
quantum dynamics of dissipative systems, and the vacuum tunneling 
phenomena in non-Abelian gauge field theory. 

Apology. This is the notes of a lecture on the theory of stochastic 
quantization which I made at Nagoya University in June 1978. At that 
time I never thought of publishing the lecture notes in any review article. 
One year has already passed after the lecture. If I do not recognize 
Nelson's invited talk at the Einstein Symposium in Berlin in March 1979, it 
is because these notes were still only in my head. Really, as Nelson 
mentioned in his talk, the present literature on the theory of stochastic 
quantization is in a preliminary state. There remain several problems that 
force us to increase precision from the viewpoint of mathematical physics. 
To clarify the problems, of course, a wide view on the present status of the 
theory seems to be needed. Then I believe strongly that it is not meaning- 
less to publish these lecture notes in the scientific literature as a review of 
the theory of stochastic quantization. I restrict myself to the application of 
the stochastic quantization because a review of the basic features of it has 
already appeared in La Rivista del Nuovo Cimento recently. In Nelson's 
words, "It is time, in March 1979, to declare this field of research to be 
respectable." 

1. MATHEMATICAL PRELIMINARIES 

In this chapter, prior to the exposition of the stochastic quantization 
procedure, we give some of the basic notions of random processes such as 
Wiener process, Markov processes, martingales, and Fokker-Planck equa- 
tion. We also investigate, with Nelson, the kinematics of random processes. 

The main sources for this chapter were Nelson's book (1967), of 
course, and the texts by Kolmogorov (1933) and Neveu (1970). 

1.1. Random Processes, Expectation and Conditional Expectation. By 
the notion of random process X t, - o o  < t <  oo, in R ~ we denote the triplet 
(~, 0~ (Prob), Prob): f~ = II_ ~o<t< oo Rn is the totality of paths y in R n, i.e., y; 
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R--->R" and Prob the probability measure defined on a o algebra @ (Prob) 
of subsets of fL Probability theoretically speaking, f~ is a base space or a 
sample space and the triplet (~2, | (Prob), Prob) a probability space. 

Any random process would be specified by giving the probability 
measure on ~2; different probability measures define random processes of 
different natures. 

By the notion of event e we denote a condition on the element of f2 
such that {~0~f210~ satisfies condition e} belongs to @(Prob). Probability 
of the event e is defined to be Prob({~0 E f]lw satisfies condition e}). 

By the notion of random variable Z we denote a measurable map from 
a measurable space (~2, | (Prob)) to another one (S, @ ), i.e., Z; f ~ S  such 
that Z - 1 ( @ ) c  |  Expectation or mean value of the random vari- 
able Z is defined by 

= s (1.1) 

For example, X~(o~) = o~ ~ R", for each s E R, defines an R"-valued random 
variable X,, where w~ denotes a cross section of the sample path o~ at the 
time s. The random process X t, - o o  < t  < Qr is equivalent to a family of 
random variables (X~), ~ n. 

Next we shall introduce a notion of conditional expectation. Let o-9- be a 
sub-o-algebra of | (Prob) and Z a random variable with finite mean, i.e., 
Z E Ll(f~, Prob). Then a conditional expectation of Z with respect to o-9- is 
defined to be a ~-measurable function E{ Z I~ -} on [] such that 

fEz(ta)  Prob(dto) = fEE( Z I~ Prob (d t a) (1.2) 

holds for VE E ft. It is worthwhile to notice that the conditional expecta- 
tion E{ZI~ is nothing but a Radon-Nikodym derivative of a o-additive 
function on ff 

�9 I z ( E ) = f z ( t a ) P r o b ( d t a ) ,  VEef f  (1.3) 

with respect to the probability measure Prob. Therefore the conditional 
expectation, if it exists, is unique with probability one. We prefer to write 
E{Z[Y)  in spite of E{Z[~ )  if the sub-o-algebra ~ is generated by a 
random variable Y. 

Following are some of the basic properties of the conditional expecta- 
tion: 

(1) If Z > O ,  then E ( Z [ f f )  >0.  
(2) E{ aZ+  bY]~3} = a E ( Z [ ~ }  + b E ( Y I ~ ) .  
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(3)  e{e(zl~-}} = e(z}. 
(4) If Z is ~ measurable, then ffz(Zl~ ) ---Z. 
(5) If Z is independent of ~, then 0:{ZI~ = ~:(Z}. 
(6) 0:{E(ZI~ } = fi:{Z]~ } for any sub-o-algebra $ c ~. 
By the notion of conditionalprobabiliO, of the event e with respect to 

we denote a conditional expectation of the characteristic function of a 
subset {~ ~21~0 satisfies e} with respect to oy, i.e., 

Cond { ~19-} = n:{ le l~}  (1.4) 

where 1 e denotes the characteristic function of E = {~01,0 satisfies e}. In the 
simplest case, ~  FC, q~,S2) for a subset F ~ |  such that 0 <  
Prob(F) < 1, one obtains 

Cond {EI~- ) = { Prob (E A F)/Prob(F) on F (1.5) 
P r o b ( E A F C ) / P r o b ( F  c) on F c 

For the last exposition of this section we prove the following theorem. 

Theorem (Bayes). 

Cond{ElF}=Prob(E)Cond{FlE}/Prob(F ) (1.6) 

Proof. By equation (1.5) we have 

Prob (F)  Cond {ELF) = Prob (E r F)  

= Cond { FI E } Prob (E). 

2. Wiener Process. We shall construct a Wiener process in R" as a 
fundamental example of the random process in what follows. The con- 
struction is due to Nelson (1964). 

Sample space of the Wiener process is taken to be 

f~ = I I  ~" (1 .7 )  
- - o o  < t < e o  

where R" denotes a one-point compactification of R'. With the usual 
product topology, ~ becomes compact and Hausdorff. 

Let 

pt(x,d.y)=(4qrDt)-./2exp( Ix-yl 2 4DT )d'y (1 .8)  
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t > 0 ,  be a n  n-dimensional Gaussian measure centered around x E R  n, 
where D > 0 stands for a diffusion constant. 

By the notion of cylinder function on ~2 we denote a function f ;  ~2--->R 
of the form 

f (  ~o ) = F(  6o, , . . . , o~t_ ,, o~t, . . . . .  ~o,~) (1.9) 

for t_, ,  < �9 - �9 < t _  1 < 0 < t t  < - - �9 <tin. Firstly we define the Wiener integral 
of a cylinder function f by 

I x ( f )  = f p' .... - t - ' (  X-m+ l,dX-m)" "'P -1-1( Xldx-  1) 

X pt '(x,  dXl)" " "pt"-tm-t(Xm_l, dXm)F(X_m . . . .  ,Xm) (1.10) 

For continuous F; R2"---)R, the integral (1.10) exists because we have 

I x ( 1 ) = l  (1.11) 

Let C(12) be the totality of continuous functions on f~ and Ccyl(~ ) that 
of continuous cylinder functions on ~2 (a cylinder function f is continuous 
iff F is continuous). C(f~), with the usual supremum norm, is a Banach 
space. Secondly we define the Wiener integral of a continuous function 
g ~ C(~2) as follows. 

By the Stone-Weierstrass theorem, we can approximate any function 
in C(fl) uniformly by those in Ccyl(~2). The mapping Ix; f - - - ) Ix( f )  defines a 
bounded linear functional on C~yl(f~ ) of positive type, i.e., 

[Ix(f)l < [Iftl = sup If(o~)[ (1.12) 

I x ( f )  >10 i f f f  >/0 (1.13) 

Then, the mapping 1 x has a unique extension to a bounded positive linear 
functional on C(fl). The extension should also be denoted 1 x. 

The Wiener integral of g E C(f~) is defined to be I x ( g  ). By the 
Riesz-Kakutani  theorem, we find that there exists a regular normalized 
measure/~x on f/, indexed by x E ~n, such that 

I x ( g ) =  f g(~)bt~(d~o) (1.14) 

holds for Vg E C(~2). This is the Wiener  measure.  
Adopting the Wiener measure as a probability measure, we can define 

the Wiener process W, - cr < t  < r in R n by a triplet (~2, | (#~),/z~). 
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Concerning the domain of the Wiener measure | we have the 
following theorem. 

Theorem [Wiener (Nelson, 1964)]. Let d# be the totality of continu- 
ous paths ~, such that ~,(t)~ R n (not ~" !) for - ~  < t  < ~ ;  then 

X - 1 (1 .15 )  

for x in R n (not Rn !). 

Consequently 6~(/~x) is taken to be a o algebra of Borel sets of ~, i.e., 
(~). 

In this section we have constructed the Wiener measure making a 
detour along the Stone-Weiers t rass-Riesz-Kakutani  bypass. This is not 
the only way; there is a short cut due to Kolmogorov (1933). 

We conclude this section with the following two theorems. 

Theorem. 
lem 

u(t, x)= fuo(wt)t~X(dto) is a solution to the Cauchy prob- 

__3 u = D div grad u (1.16) 
~t 

u(O, x) = Uo(X ) (1.17) 

Theorem. (Feynman-Kac)  A solution to the Cauchy problem 

-~  u = D div grad u + U(x, t) u (1.18) 

u(O, x) = Uo(X ) (1.19) 

is given by the Wiener integral 

u(t ,x)= f Uo(~,)exp[ , ds fo U(%'s)-}--D ] #x(&~ (1 .2o )  

1.3. Markov Processes and Time-Reversed Markov Processes. 
Among various types of random process, the most relevant one to theoreti- 
cal physics would be Markov processes: Markov process in RnXt, - oo < t < 
oo, is a random process such that 

Cond { Xt c EIXt. = x,,, . . . . .  Xl, = xl ) =Cond { Xl ~ EIXt.= Xm ) (1.21) 

holds with probability one for any time series - o o  < t l  < " "  <t in<t ,  
where E is a Borel set of R n. 
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By the notion of transition probability law of the Markov process we 
denote 

e ( t ,  EIs,  x ) = C o n d { X t ~ E l X , = x ) ,  t > s  (1.22) 

which satisfies the following Chapman-Kolmogorov equation: 

e( t ,  E l s , x )  = f e ( t ,  E l u , y ) e ( u , d " y l s ,  x )  (t  >u  >s)  (1.23) 

Next we shall prove that the time-reversed process of  a Markov  process 
is also a Markov process. The  time-reversed process of the Markov process 
is defined to be a random process X * , - o o  < t <  0% such that 

X* = X _ ,  (1.24) 

holds with probability one. 
For technical simplicity we replace R n by 71" (Z denotes the totality of 

integers); this corresponds to a lattice approximation. 

Theorem. Let X t, - ~  < t <  ~ ,  be a Markov process in 7/", i.e., 

Cond ( Xt. = x,,lXt._l = xm_ 1 . . . . .  X, = x ,  } 

= C o n d ( X t = x m l g t . _ = X m _ , )  (1.25) 

for any - ~ < f i < - - -  < t , < ~  and Xl , . . . , x , ,~Tl" .  Then we have 

Cond ( S t =  xllX,2 = x2,.. . ,gtm = Xm) = C o n d  (X,l...~- XllXt2= x2) 

(1.26) 

i.e., the time-reversed process X*, - oo < t  < oo, is also Markov. 

Proof The left-hand side of equation (1.26) can be manipulated as 

Prob ( Xq = x 1 . . . .  ,Xt .  -= Xm ) / P r o b  { X  t2 = x 2 . . . . .  X, .  = xm } 

= C o n d  (St .  = XmlXt._ = X,,,_ l ) . . .  Cond { S t =  x21Xt = x 1 ) P r o b ( g l l =  x I ) 

/ C o n d  ( X t =  x , , [X , . _=  x, ,_ 1 ) . . .  Cond { X , =  x31X,2= x2) Prob ( X t =  x2) 

= C o n d  ( X , =  x2lX, = X 1 ) Prob { X t =  x 1 } / P r o b  ( X t =  x2) 

= Cond (Xtl = XlIXt2 = x2) (1.27) 

which is identical with the right-hand side of equation (1.26). [] 
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Theorem. Let p(t,xls,y), t>s, be a t ransi t ion probabi l i ty  law of 
the M a r k o v  process  X t, - o o  < t <  oo, p(t,x) a probabi l i ty  distribu- 
t ion of X r Then  a t ransi t ion probabi l i ty  law of ttie t ime-reversed 
M a r k o v  process  X*, - oo < t <  oo,p*(t,y]s,x),t>s, is given by  

p*(t,yls, x )=p( - t , y )P( - s ,  x l - t , y )p( -s ,x )  -1 (1.28) 

Proof A st ra ight forward man ipu la t ion  yields 

p*( t,yls, x) = C o n d  {At* =ylX* = x} 

= C o n d  (X_, =ylX_~ = x) 

= P r o b  (X_ t =y,X_, = x } / P r o b  (X_+ = x} 

=[Prob{X_,=x,X t=y}/Prob(X ,=y} ] 

�9 [ P r o b  ( X _, = y } / P r o b  ( X_~ = x } ] 

= P r o b  (X_, = y } - C o n d  { X  s = xlX_t = y  ) / P r o b  (X_~  = x )  

= o (  - t , y ) p  ( - s ,  x I - t , y ) o (  - s ,  x ) - '  (1.29) 

1.4 Mart ingales.  Let  o - / t , - o o < t < o c ,  be an  increasing fami ly  of  
sub-o-a lgebra  of 6~ (Prob) .  By the not ion of martingale in R n with respect  
to the family  o z t , - o o  < t <  oo, we denote  a r a n d o m  process  X o - o o  < t <  
~ ,  such that  X t is ozt -measurable ,  belongs to L1(~, Prob) ,  a n d  

E{Xt[ o7~)=Xs ,  t>s (1.30) 

holds with probabi l i ty  one. If  the equal i ty in equat ion  (1.30) is replaced by  
inequalit ies >/ and  ~<, we have  submartingale and  supermartingale, respec-  
tively. 

Fol lowing are some of the basic  propert ies  of  mart ingales:  
(1) if X t, - oo < t  < oo, is a submar t inga le  (supermart ingale) ,  then  re(t) 

= E(Xt} is a increasing (decreasing) funct ion of t. 
(2) re(t)= const  iff X t is a mart ingale .  

1.5 Kinematics of Random Processes.  We  shall invest igate the kine- 
mat ics  of a r a n d o m  process  Xt, - o o  < t  < oo, in R n. 

It  is convenient ,  fol lowing Ne l son  (1966, 1967), to in t roduce  an in- 
creasing family ~ t ,  - oo < t < o% and  a decreasing family  ~t,  - oo < t < oo, 
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of sub-o-algebras of @ (Prob) such that X t is 02 t and ~ We 
can always choose such families; e.g., a o-algebra generated by { X ,  lu <t )  
and that by ( X ,  lu >1 t}, respectively. 

Now we classify various types of random processes from a kinemati- 
cal point of view in what follows. 

Definition. X t, - o o  < t  < oe, is an (SO) process if each X t belongs to 
L~(f~, Prob) and the mapping t~->X, [from N to L1(~2, Prob)] is continuous. 

Definition. X t , - ~  < t <  ce, is an (S1) process if it is an (SO) process 
such that 

D X  t = lim 1 E (X~+ h - Xt[~2,} E Ll (a ,  Prob) 
h$0 

D . X  t = lim 1 E ( X t -  X t_h[~  } E Ll (a ,  Prob) 
h$O 

and the mappings tv-~DXt, t~-~D.X t are both continuous. 

Theorem. Let A r t , - m  < t <  ~ ,  be an (S1) process; then we have 

for a <b.  

E(Xb--Xal@a)= -(fabOXsdSl@a} (1.31) 

(1.32) 

The proof of the theorem can be seen in Nelson's book (1967). 
Let us define R•  random variables Y(a,b) and 

through the relations 

x~- xo = s  + 

fa X b -  X = y* D,Xsds + (~,b) 

Those are difference processes, i.e., 

(1.33) 

(1.34) 

Y~ - ~ (1.35) (a ,b) - -  - -  Y(b ,a)  

r~a,b)+ Y~ -- r~ (1.36) (b,c)-- (a,c) 

Y<a,b) is 62max(~,b~ =measurable  and Y(*~,b)~min(~,b)-measurable. Then there 
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exist two random processes Y t , - ~ < t < c o ,  and Y * , - o o < t < c ~ ,  such 
that Y(a,b) = Yb-- Ya and Y* - * ~ ,b ) -  Yff -  Y2 with probabili ty one. 

Theorem. Let Xt , -oo<t<oo ,  be an (S1)process ;  then Yb-Ya 
and Yff -  Y* are difference martingales, i.e., 

for a <b .  

Definition. 
such that 

E( Yb-  Y~l~a) = 0  (1.37) 

E( Y~, - Ya*l~b} = 0  (1.38) 

Xt , -oo  < t <  oo, is an ($2) process if it is an  (S1) process 

Yb -- Y~ ~ L2(f~, Prob) 

Y~ - Y* ~ L2(~2, Prob) 

oz(t) = lim 1 E ( ( y t + h _  y t ) |  h yt)lpt } ELl( f~ ,Prob)  
h$O h- 

02(0 = lim 1 E { ( Y * -  Yt*h)| Y*-h)l%} ELl ( f~ ,P r~  
h~O 

and the mappings t~o2(t) and t~o2(t) are both continuous. 

Theorem. Let X t, - oo < t <  oo, be an ($2) process; then 

F_((Y b -  Ya)@(Yb- Ya)l~a)=~_(fabo2(s)ds]~a) (1.39) 

~_((Y:-  Y * ) |  Y*)l~ E(fabOE(s)dS]~b) (1.40) 

for a <b .  

Definition. Xt,--oo < t  < ~ ,  is an ($3) process if it is an  ($2) process 
such that deteE( t )> 0 and detaE( t )> 0. 

Nelson clarified the following nice properties of the ($3) process. 

Theorem. (Nelson) Let  X t, - oo < t < oo, be an ($3) process such 
that the support  of Prob  is the totality of continuous paths in R n. 
Then there exist a Wiener process W t, - c o  < t <  oo, and the time- 
reversed process Wt*, - oo < t <  0% such that W o - W a is ~ 
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measurab le  and  W ~ -  W*~min(a,b)-measurable, and  we have  

X b - X a = ~ a D X s d s +  ~bo(s)dW, (1.41) 

b ~ o.(s)dW; (1.42) Xb -- X~ = f a D ,X  f ls  + b �9 

where the last terms of equat ions (1.41) and  (1.42) are the I t6  
stochastic integrals.  

Proof  of the t heo rem can be seen also in Nelson ' s  b o o k  (1967). 
W e  conclude the classification of r a n d o m  processes with three theo- 

rems.  

Theorem. Let  Xt, - oo < t <  oo, be an (S1) process;  then  

O:{DXt} = ~_{D.Xt} (1.43) 

and  X t = const  iff DX t = D .X  t =0 .  

Theorem. If X t, - oo < t < 0% is an ($2) process,  then  

n: { o2(t) } - E{ o.2(t)) (1.44) 

Theorem. (Nelson) Let  X t, - ~ < t <  oo, be an (S1) process and  f ,  
g funct ions def ined on  ~n + 1 such that  X t, Df(X t, t) and D. g(X t, t) 
belong to L2(~2, P r o b  ), and  the mapp ings  t~--~Xt, Df(Xt, t ) and  
D. g(X t, t) are cont inuous.  Then  we have  

d-~z( f(Xt,t)g(Xt,  t) }=~-{[ DF(Xt, t) l g(Xt, t)+ f(Xt, t)D.g(Xt,  t) ) dt 

(1.45) 

Here  Df(X~, t) and  D. g(Xt, t) are the mean forward derivative 
and mean backward derivative defined by  

Df(X~,t)= l im 1 E(f (X,+h, t+h)_f (X~, t ) j~ ,  } (1.46) 
h$o 

1 
D.g(Xt,  t)= l im-~ - (  g(Xt, t ) - g ( X t _ h , t - h ) l ~ t }  (1.47) 

h$O 
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Proof We claim that 

E { f(Xb, b)g(Xb, b) - f (Xa,  a)g(Xa, a) } 

= fabE{[Df(Xt, t)l g(Xt, t)+f(Xt, t)D*g(Xt, t)}dt 

(1.48) 

which concludes the proof. Equation (1.48) can be verified by dividing the 
interval [a,b] into n equal parts: tj= a + j ( b - a ) / n  ( j - -0  . . . . .  n), and pass- 
ing to the limit n ~ m :  

g- { f( X b, b)g(X b, b) - f( X~, a)g( X~, a) } 

n-1 
lim ~, 

n-+oo J =  1 
{ s( x,,+,,,,+ ,)g( x,,,t,)-j( x,,,,,)g( X,, ,,,,_ O ) 

n- I  
= lirn j~=l ~-{[ f (Xw ] [  g(Xt j ' t j ) - l -g (X t j - "5" - ' ) ] /2  

-~ [ g(Xlj, tj)--g(Xtj_l, tj--1) ][ f(Xlj+l, tjq-l)~-f(Xlj, tj) ] /2 ) 
n - 1  

= n--.oolim j~.=, E{[Df(Xtj, tj)]g(Xtj, tj)+f(Xtj, tj)D,g(Xtj, t j ) } ' ( b - a ) / n  

--the right-hand side of equation (1.48). 

Now we proceed to formulating the kinematics of the (S3) process. 
Consider an ($3) process X t, oo < t <  oc, with the following properties 

satisfied with probability one; o2(t)/2=const = v, DXt= b(Xt, t) and D.X t 
= b.(X t,t), where b and b. are vector fields of class CI. In this case one 
can calculate the mean forward and backward derivatives 

D. g(Xt, t) = -~ + b.. grad a2 
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where we have utilized the Taylor expansions 

f(X,+ h, t + h) =fl(X, + DXt.h + (2e)'/2( W,+ h - Wt) , t + h)  

0 X = f (X , , t )  + --~f( , , t ) .h 

+ gradf(X,, t). [ DX,.h  + (2e)'/2( Wt+ h - I,V~) ] 

+ l g r a d |  IV,+ h - I/V,)| h - IVt) + o(h)  

(1.51) 

g( X,_h, t -  h) = g( x , -  D . X c h -  o.( t)( W7 - W,%), t -  h) 

= g ( X  o t) - ~ g(Xt,  t) .h - gradg(Xt ,  t) 

. [ D.X , .h  + o . ( t ) (  IV,* - W*_h) ] + kgrad| t) 

�9 o . ( t ) ( W t * -  W T h ) |  Wt*_h)+o(h ) (1.52) 

There are close relations between four quantities v, 02,/2, b, and b.. 
Namely, we have the following theorem. 

Theorem. Suppose f and g belong to C2(R")| Col(N); then 

f_== - { f(xt,,)ma(x,,,) ) d, 

(1.53) 

Proof Integrate equation (1.45). �9 

Equation (1.53) can be written in terms of the probability distribution 
density O(x,t) (=Radon-Nikodym derivative of •rob(X t @ dnx} with re- 
spect to the Lebesgue measure dnx), obtaining 

s D f ( x , t )  ] g ( x , t ) O ( x , t ) d " x  d ,=  - f a . + l f ( x , , ) [  D . g ( x , t )  ]O(x , , )d"x  dt 

(1.54) 
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This claims D * = - D . ,  where an asterisk superscript means  to take an 
adjoint  with respect  to the measure p(x , t )dnxdt ,  i.e., 

- ( ~ t  + b ,  �9 g r a d -  -~- g r a d |  

1( - v d ivg rad )o  (1.55) - - P - _ \ - - ~  b - g r a d - d i v b +  

By equat ion (1.55) we find 

0 2 ( 0 / 2  = vI  (I ,  unit  matrix) 

b . ( x ,  t) = b (x ,  t) - 2v grad log p(x,  t) 

(1.56) 

(1.57) 

Kinematical  quantit ies we need to describe the kinematics of the 
process X t, - m < t  < oo, are the mean velocity, the osmotic velocity, and the 
mean acceleration. They  are defined,  following Nelson (1966, 1967), to be 
v ( X  t, t) = ( D X  t + D . X t ) / 2 ,  u ( X  t, t) = ( D X  t - D . X t ) / 2  and a(Xt,  t) = ( D D . X  t 
+ D . D X t ) / 2 ,  respectively. Explicit ly we have 

v = ( b + b , ) / 2  (1.58) 

u=(b-b,)/2 

= v grad logo  (1.59) 

a = -~  v - u- grad u + v- grad v - v div grad u (1.60) 

The  second equali ty of equat ion  (1.59) is known as the Einstein relation. 
In utilizing the forward  and  backward  F o k k e r - P l a n c k  equat ions 

~-~ p = - div(bp) + v div gradp  (1.61) 

0 
-~  P = - d i v ( b .  P) - v div grad P (1.62) 

which will 
continuity 

be derived in the next  section, one obtains the equation of  

- ~  O = - div(vo) (1.63) 
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Equations (1.59) and (1.63) yield 

-~  u = - u grad div v - grad u.v (1.64) 

Finally we find the following basic relations between the three kin- 
ematical quantities: 

L u( X t, t) = - l, grad div v(X,  t) - gradu( X t, t).v( Xt, t) (1.65) 
0t 

~--~v(X, t) = a ( X  t, t) + u ( X  t , t). grad u ( X ,  t) - v ( X ,  t). grad v(Xt,  t) 

+ p d i vgradu(X  t, t) (1.66) 

These relations completely specify the kinematics of the process X t, - oo < 
t < or, provided that the mean acceleration is related to the mean velocity 
through a certain equation of motion. 

1.6. Fokker-Planck Equation. By substituting two functions f and g 
in equation (1.45) by f = f ( x )  and g = 1, respectively, we find 

d 
F{f(Xt)  } = ~-{Df(Xt)  } = [g{(b-grad+ vdivgrad) f (Xt )  } (1.67) 

where X t, - oo < t < oe, is the same as in the preceding section. Substitution 
by f =  1 and g = g(x)  also gives 

d 
-d-7 E{ g(X,) } = E{ D ,g (X , ) )  

= E { ( b , . g r a d - t ,  d ivgrad)g(X,)}  (1.68) 

Equations (1.67) and (1.68) can be written 

fj(x)o(x,,) dox = f (b" grad + pd ivgrad) f ( x )p (x , t )dnx  

ff(x)(-divb + ~ divgrad)p(x, t)dnx (1.69) 

d n -~ f g(x)p(x,t)d ~ = f (b,-grad- pdiv grad)g(x )p(x , t )d"x  

= fg(x)(-divb,- udivgrad)o(x,t)d% (1.70) 

in terms of the probability distribution density. 
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Since f and g are arbitrary functions, we have 

O 
~ t  p = - div(bp) + p divgradp 

div(b,p)  - v divgradp - 

These are the forward Fokker-Planek equation 
Fokker-Planek equation, respectively. 

and 

(1.71) 

(1.72) 

the backward 

2. S T O C H A S T I C  QUANTIZATION 

This chapter is devoted to an exposition of the stochastic quantization 
procedure in both cases of quantum mechanics and quantum field theory. 

The main sources for this chapter were Nelson's book (1967), as usual, 
and the present author's paper CYasue, 1978a). 

2.1 Quantum Mechanics. Let us consider a classical dynamical sys- 
tem consists of n configuration variables q(t)=(ql(t) . . . . .  qn(t)). They 
satisfy Newton's equation of motion 

m~(t) = e[ - ~-~-Aot ] (q( t ) , t ) -gradV(q(t) , t )  j +eF(q(t),t).O(t) (2.1) 

where m and e are mass and charge parameters, A(q,t) and V(q,t) vector 
and scalar potentials for external electromagnetic fields, and 

F(q,t) =gradAA(q, t )  

= alt grad | A (q, t) (2.2) 

field strength tensor. 
To quantize such a dynamical system, the stochastic quantization 

procedure demands the quantized configuration variable to be a random 
process X t , - o o < t <  oo, on the configuration space R n. It is the 
($3) process considered in Section 5 such that r is taken to be h/2m, where 
h denotes Planck's constant divided by 2rr. 

As we have shown at the end of Section 5, the kinematics of the 
quantized configuration variable X t, - do < t  < do, is subjected to the rela- 
tions 

~ u ( X t , t )  = h graddivv(Xt, t)_gradu(Xt, t).v(Xt, t) (2.3) - 

~ v ( X  t, t) = a(X t, t) + u(X t, t). grad u(Xt, t) v(X t, t). grad v(Xt, t) i 

h divgradu(Xt, t) (2.4) 



Stochastic Quantization 877 

To make the interrelation between three kinematical quantities v(Xt, t ), 
u(Xt, t ), and a(Xt, t ) closed, we assume with Nelson (1966, 1967) Newton's 
equation of motion in terms of the mean acceleration and the mean velocity 

ma(Xt, t )=e [ -  ~ A ( X , t ) - g r a d V ( X t ,  t )]+eF(Xt,t).v(Xt,t  ) (2.5) 

Kinematics of the quantized configuration variable Art,- o e < t <  o% is 
completely specified by solving equations (2.3), (2.4), and (2.5). 

This is done by assuming the integrability of the mean momentum, i.e., 
we demand 

mv(Xt, t) + eA (Xt, t) = h grad S(Xt, t) (2.6) 

with probability one, where S belongs to C2(R") |  Since the inte- 
grability of the osmotic velocity has been already verified, obtaining 

u(Xt, t)= __h gradR(Xt, t) 
m 

(2.7) 

with R =log(p) 1/2 [see equation (1.59)], one can convert equations (2.3), 
(2.4), and (2.5) into the following two equations for two unknown kin- 
ematical quantities S and R: 

~ t  S = 2 ~  (div grad R + I grad R I z - I grad S I 2) 

e 2 
+ e A . g r a d S _  2 e m ~ A - ~ V+ const of integration (2.8) 

0 h h 
0--t- R = - 2--m divgrad S - - -  gradR, grad S 

m 

e e 
+ --m A. gradR + ~m divA (2.9) 

Note that the constant of integration in equation (2.8) can be made zero by 
a suitable choice of S. 

We introduce the wave function or the probability amplitude of the 
system ~p(x,t)=exp[R(x,t)+iS(x,t)] (i 2= --1). This is only an unknown 
kinematical quantity of the quantized configuration variable Xt, - oo < t < 
oo, which is, by equations (2.8) and (2.9), subjected to an equation 

1 
I -  ihgrad- eA[2 + V)~p (2.10) i h ~ tP= ( -~m 

This is nothing but the Schr6dinger equation. 



878 Yasue 

Finally we find that the kinematics of the quantized configuration 
variable is completely specified by solving the Sehr6dinger equation (2.10). 
The probabilistic interpretation of the wave function evidently holds, 
because we have 

[#(x, t)J2d"x = exp [ 2R(x,  t)]  d"x 

=p(x,t)d~x 

= Prob { X t e d~x } (2.11) 

2.2 Quantum Field Theory. In this section we investigate the 
stochastic quantization of wave fields. We make use of the basic notions of 
the nonstandard analysis (Davis, 1977; Nelson, 1976) for the purpose of 
treating infinitely many degrees of freedom consistently. 

First we shall develop a theory of infinite-dimensional random 
processes. 

We fix a free ultrafilter (Davis, 1977) H: on ~d. Let *E=~In~NRn/H: be 
the ultra-Euclidean space, i.e., a quotient space of i Ine~R n with respect to 
the equivalence relation 

a ~b<=> { n ~ ~[a  (~) = b ~) } ~ ~ (2.12) 

where a = ( a ( ' ) } ~ m  = {(a~ ~) . . . .  ,a~("))},E ~ and b = (b (~) )~N = 
{(b~ ~) . . . . .  b~(")))nE ~ belong to I I ~ R  n. The equivalence class which con- 
tains a = (a  (~)}. E • should be denoted by *[a ~n)] ~ * E. 

The ultra-Euclidean space *E possesses a structure of linear space 
over the ultrareal field * R = R N / F ,  and that of Euclidean space with 
respect to the inner product  

<[ a(")], [b(~)] > = * [<a("),b(")> ] 

= *( e~na(pn)b(p ~) ] @*R (2.13) 

By the notion of random process X t , - ~ < t < ~ ,  in *E (i.e., an 
i n f i n i t e - d i m e n s i o n a l  r a n d o m  process )  we d e n o t e  a t r ip le t  
(*f~,@(*Prob),*Prob); *f~ is a totality of paths 7 in *E and *Prob a 
nonstandard probability measure on *~2, i.e., a o-additive set function from 
the o algebra @(*Prob) to *[0, 1]=[0, 1]ruff such that *Prob(@)=0 and 
�9 Prob(*~)--1.  It is worthwhile to notice that we have generalized the 
concept of probability, in the sense of the nonstandard analysis, to allow 
its infinitesimal values. 
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Secondly we generalize the concept of real-valued functions defined 
on a D-dimensional Euclidean space R D. 

Let S(R D) be the Schwartz space over R ~ and (ee}pe~CS (R D) a 
complete normalized orthogonal system C.N.O.S. in L2(R~). Then one can 
associate a unique *R-valued function ~ on No with each element *[a ("~] in 
*E as follows: 

= *[ p~<na(n)ep(" ) ] (2.14) 

Totality of such *R-valued functions is denoted by *E(R ~ and called 
"Kawabata space" (Kurata, 1977) over R D. It is homeomorphic to *E if we 
define an inner product 

=* [p,q<na(n)b(n)<ep,eq)] 

-~*[p~<na(n)b(n)p] 

=<a,b) (2.15) 

for any two elements @= *[Zpa~,ap(n)ep] and X = *[Y,p<,bp(n)ee ] in *E (RD). 
Each function @E*E(R ~') is locally differentiable and integrable in 

the sense that 

gradep(x)=*[ ~',~<na(p~) gradep(x) ] E*R (2.16) 

and 

* E 

hold. Local product and tensor product of d~ and X can be defined to be 

~(x)x(x)=*[ p,q<n ~ a(p")b(qn)ep(x)eq(X) ] E*R (2.18) 
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and 

(?(~X= * [ p,~q <n a(n)b(qn)e p ~ eq ] 

E * E (Ro) | E (n  D) (2.19) 

respectively. 
Let X(n)(t) ,-oo < t < o o ,  be an ($3) process in R n such that the 

probability measure is concentrated on the totality of continuous paths 
and the following properties are satisfied with probability one: o2(0/2 = 
const = p, DX(n)(t) = b(n)(X@)(t), t) and D.X(m(t) = b(.n)(X(n)(t),t), where 
b (") and b(. ") are vector fields of class C ~. Starting with a family of such 
random processes (X(n)(t)}nEN, one can construct a random process 
xI ' t ,-  oo < t  < oo, in *E(R D) by 

~ t = * I p~<nX(n)( t )ep ] (2.20) 

The triplet (*f] ,@(*Prob),*Prob) is defined to be *f~=Hn~f~(n)/F,  
| (*Prob) = Hn~N@ (Prob(n))/F and *Prob = *[Prob(")], where the triplet 
(f~("),| (n)) denotes the probability space of the process 
X(n)(t), - oo <t < oo. 

Thirdly we shall introduce, with Kawabata  and Kurata (1977), the 
functional derivative and the functional integral of a * R-valued functional 
on *E (R D) of the type F(q~)--*[Fn(x(n))]: 

8 F _ . [  OFn(x(")) 1 
axe("> ep  *E(R 

(2.21) 

f f (2.22) 

where +--*[Y.p<nx~n)ep]. In terms of the functional integral, a nonstandard 
probability distribution of ff't is given 

*Prob ( g/t E 3 if" } --* (Prob(n) [ X(n)(t) E dnx (n) ] ) 

= * [ .n( x(n}, t )dnx n> ] 

=*[.n(x(n>,t)]-*[d"x<">] 
= (2.23) 

where P(qJ, t) = *[0n(x ("), t)] and 8~p = *[d"x@)]. 
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The nonstandard probability distribution density P satisfies infinite- 
dimensional versions of Fokker-Planck equations (1.71) and (1.72): 

+ ~ f d"x ~2 (2.24) 8~(x)2 e( , ,  t) 

- v f d O x  8 2 &/,(x) 2 P(G t) (2.25) 

where V t and U t denote transformations 

V,; +~ V,r =*[ Z b~")(x(~ 

Ut; ~-) Ut~P(x) = *[ p<n ~ b*(n)(x(n)'t)eP 1 

(2.26) 

Similarly the mean forward and backward derivatives induced by the 
process ',t', are 

1 
DF(,P, , t )  = lim -~ E ( F('Pt+h, t+  h) - F( ' I ' t , t ) l*~t  } 

h$O 

-Ot + f dDxV'tp(x) + v ( d ~  - F('Pt, t ) (2.28) 
J ~ ( x )  2 

D,F(xt ' t , t  ) = lim 1 ~_{ F(,{,t,t) _ F(Wt_h, t  - h)l*%) 
h$O 

o + f dOxU, f(x ) 8 
= u ~+(x) 6~(x)2 F('I ' t , t  ) (2.29) 

where * 6 ) t , - o o < t < o o ,  is an increasing family of sub-o-algebra of 
@ (* Prob) and * fit, - 0o < t < oo, a decreasing one. 

(2.27) 
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Finally we can proceed with the stochastic quantizafion of wave fields. 
Let us consider a real scalar field if(x, t) on R D with field equation 

~ ( x ,  t) = 8 m2ff/2) tidy + J(~b) ] 84,(x,t) [ l f (lgrad4" 2+ (2.30) 

where m is a parameter with dimension L - l  and J(~b)= *[Jn(x(n))] the 
interaction potential. 

The stochastic quantization procedure demands the quantized fieM 
variable to be a random process ~ t , - o o < t <  or in *E(R n) of the afore- 
mentioned (vpe with P=h/2. Kinematics of the quantized field xt' t is 
completely specified by the following fieM equation in the generalized sense: 

+<oo.+o.o>++: +[Is ] 8,t,, (Igrad't',l 2+ m2~2)dOy + J ( ~ t )  

(2.31) 

This can be manipulated as 

1[  0 6 h 2 6 2 0 
[ -~TU'qJ+fdDyV'tp(Y) 6 - ~  U'~+-a-(dDy~,,2U'q~+z J 6q~(y) -gi V,p 

h2 + 62 V,~ ] I 
- '  8q,( y ) .j1+= ,+,, 

- 84'[+'~ 1 fClgradq~lE+mZ+2)dDy+j(+)]+ 
+=% 

(2.32) 
Next we make an additional assumption on the transformations V t and Ut: 

�89 u,)~ =h~ s(~,t) (2.33) 

where S(-, t) is a functional on *E (R n) of the type S(q~, t )=  *[Sn(x ("), t)]. 
Let us introduce a wave functional 

f~(~b, t) ---- [ P(~b, t) ],/2 exp [ iS(~b, t) ] (2.34) 

on *E(R~ Then equations (2.24), (2.25), (2.30), and (2.33) yield the 
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Sehr6dinger equation 

_ l i  2 _ _  
81 

8r 2 
+ Igradr 2 + m2~(x) 2 ] 

• a ( r  t) + J ( r 1 6 2  t) (2.35) 

Kinematics of the quantized field ' ,I ' t ,-~o < t  < ~ ,  would be determined 
completely by solving a Cauchy problem: equation (2.35) with an initial 
condition tl(~, 0) = 120(r say. 

Thus the stochastic quantization is shown to provide the same repre- 
sentation as the canonical one: 

i h ~  ~2(#,t)= 1 f dOx[~r(x)2 + igrad~(x)l 2 + m2~b(x)2 ] 

• t) + t) 

[ +(x), 7r(x') ] = ih6 D(X -- X') (2.36) 

3. IRREVERSIBLE QUANTUM DYNAMICS 

In this chapter we present one of the most significant applications of 
the stochastic quantization procedure; irreversible quantum dynamics of 
open dynamical systems interacting with chaotic thermal environments. 

The main source for this chapter was the present author's paper 
(Yasue, 1978b). 

3.1 Schr6dinger-Langevin Equation. Quantum mechanics has 
been developed to deal with closed or isolated dynamical systems. There 
a time evolution of such an isolated system is assumed to be a one- 
parameter unitary group on a Hilbert space. Its infinitesimal generator is 
the Hamiltonian. 

How can one treat open dynamical systems interacting with the 
external world within the realm of quantum mechanics? Let us try to 
formulate the problem as faithfully as possible. When we intend to realize 
a quantum mechanical time evolution of such an open system, we have to 
start with the time evolution of the total system, i.e., the system plus the 
external  world, generated by the total Hamiltonian 

Hr=Hs |  I |  H I (3.1) 
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where | denotes the tensor product, H s the Hamiltonian of the system 
without the interaction with the external world, H e that of the external 
world without the interaction with the system, and H t represents that 
between the system and the external world (Davies, 1976). Then we 
encounter two difficulties: Firstly, even when the system itself is a simple 
dynamical system with finite number  of degrees of freedom, we have to 
deal with complicated ones with infinitely many degrees of freedom 
including the external world. Secondly it is difficult to specify rigorously 
the interaction between the system and the external world in each case. 

To avoid such difficulties inherent in the fundamental approach, one 
may adopt a rather phenomenological approach incorporating phenome- 
nological irreversible properties such as dissipations and fluctuations into 
quantum mechanics. 

We consider the external world, with which an open dynamical system 
interacts, as a chaotic thermal environment (a heat reservoir). It is to avoid 
the difficulty in realizing the complicated interaction between the system 
and the external world. Namely, the influence of the external world on the 
system is assumed to be purely statistical in nature. 

In classical mechanics, irreversible dynamics of such an open system 
is described by the so-called Langevin equation 

m2(t)  -- - fl2(t) - grad V(x(t),  t) + A (t) (3.2) 

where x ( t )  denotes configuration variable of the open system, V ( x , t )  a 
usual potential function, rn a mass parameter, and A ( t )  a Gaussian white 
noise (Hida, 1975a; Hida and Hitsuda, 1976) with mean 0 and variance 

~ _ { A ( t ) |  = 2 D S ( t -  u) (3.3) 

Note that the complicated interaction between the system and the thermal 
environment is characterized by the friction coefficient/3 and the diffusion 
constant 

O = f lk  s T (3.4) 

where T stands for a temperature of the thermal environment and k B is 
Boltzmann's constant (Chandrasekhar, 1943). 

Now we shall derive a quantum mechanical version of the Langevin 
equation (3.2) which might well describe a quantum mechanical behavior 
of the open system. 

Here we have to notice that neither the conventional canonical 
quantization procedure nor the path integral one would be applied to the 
present case because of the absence of the Hamiltonian or the Lagrangean 
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for the open system described by the Langevin equation (3.2). Therefore 
we are obliged to make use of a different method, in which neither 
Hamiltonian nor Lagrangean is needed. This is an emergence of the 
stochastic quantization procedure. 

The stochastic quantization of the open system (3.2) can be performed 
straightforwardly. All the procedures are the same as in Section 7, pro- 
vided that Newton's equation of motion in terms of the mean acceleration 
and the mean velocity (2.5) is replaced by the following Langevin equation 
in terms of them: 

ma(X t, t) = - flv(Xt, t) - grad V(Xt, t) + A ( t) 

Correspondingly the Schr6dinger equation (2.10) becomes 

(3.5) 

h 2 

= [ - ~ div grad + V ( x , t ) - x . A ( t ) +  ifl ~(x,t)q/(x,t) ]~p(x,t) 

(3.6) 

The random potential - x . A ( t )  in equation (3.6) may be replaced by a 
more general one R(x, t). Notice that the probabilistic interpretation (2.1 I) 
still holds even though equation (3.6) is no longer linear. 

Equation (3.6) was first derived heuristically by Kostin (1972, 1975), 
later on by Razavy (1977) in utilizing Schr6dinger's quantization procedure 
via variational problem, and has been called the "'Sehrrdinger-Langevin 
equation." The derivation explained above is based on the work by the 
present author (Yasue, 1976, 1977a) and by Skagerstam (1977). The dis- 
sipative and irreversible characters of the Schr6dinger-Langevin equation 
(3.6) have been investigated by many authors (for example, see Messer 
1979). 

3.2 Josephson Effect with Thermal Fluctuation. Many of the non- 
equilibrium phenomena characteristic of open dynamical systems interact- 
ing with chaotic thermal environments were described classically by the 
Langevin equation (3.2). So it seems adequate to make use of the 
Schr6dinger-Langevin equation (3.6) in the quantum mechanical analysis 
of such nonequilibrium phenomena. 

As one of the interesting examples let us investigate the thermal decay 
of the AC Josephson current near the critical temperature T c. 
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It is well known that in the ground state of the total system each two 
electrons at the Fermi surface in superconducting media form bound pairs 
(Cooper pairs) and behave as Bose particles. At the absolutely zero 
temperature all the electrons in the superconducting media degenerate into 
the ground state because the pairs obey Bose statistics. Then there appear 
no thermal agitations and the collective motion of Cooper pairs cause the 
superconducting current. Such a collective motion can be described by the 
following macroscopic Schrrdinger equation: 

(3.7) 

where A denotes the three-dimensional Laplacian and m the effective mass 
of the bound pair. Note that the absolute square of the macroscopic wave 
function p(r,t)= I@(r,t)l 2 coincides with the number density of the pairs in 
the ground state. 

At a finite temperature T~--T c a number of pairs proportional to the 
Boltzmann factor e x p ( - E b / k  B T) are broken into normal electrons by the 
complicated interaction due to the thermal environment, where E b denotes 
the bound energy of each pair. Those normal electrons produce complica- 
tions in the collective motion of the remaining Cooper pairs and then these 
pairs suffer dissipations and fluctuations by the thermal motion of normal 
electrons. We shall refer the macroscopic Schrrdinger-Langevin equation 

h 2 yh 1 1-, c i h ~ ( r , t ) =  ---j--~mA+ V(t , t )+R(r , t )+-~-  og ~---~,tO ]W~, ) 

to describe phenomenologically such a collective motion of the Cooper 
pairs near the critical temperature Tr 

Let us consider the collective motion of Cooper pairs at the finite 
temperature T ~  T c across a Josephson junction which consists of two 
superconductors connected by a thin layer of insulator. As we impose a 
macroscopic AC electrostatic potential difference V(t) across the junction, 
the potential function V(r, t) in equation (3.8) should be uniform in each 
superconducting region (say regions 1 and 2), that is, 

( qVl(t  ) if rEregion l (3.9) 
V(t,t) = 

L qVE(t ) if tEregion 2 
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with Vl(t ) -  Vz(t)= V(t), where q denotes the effective charge of each pair. 
Moreover we may be allowed to assume that the random potential R(r, t) 
in equation (3.8) be uniform in each superconducting region because the 
junction is small enough compared with the thermal environment. Namely, 
we have 

( R~(t) i f rEreg ion l  
R(r , t )= R2( t ) i f rEregion2,  (3.10) 

where R(t)'s are two independent Gaussian white noises such that R(t)= 
Rl(t ) -  R2(t ) is a Gaussian white noise with mean 0 and variance 

~(R( t )R(u))  = 2 C 8 ( t -  u) (3.11) 

Note that the diffusion constant G of the white noise R(t) is characteristic 
of the special choice of the junction and the temperature of the environ- 
ment. 

Under those assumptions the macroscopic wave function ~b(r,t) in 
equation (3.8) can be approximated as 

+(r,t)= I ~l(t) if r~region 1 
(3.12) 

l ~2(t) if rEregion 2 

and equation (3.8) reduces to the following coupled nonlinear ordinary 
differential equations: 

iht~,(t)= [qVl(t)+Rl(t)+yhOl(t)]q~,(t)+K~b2(t ) (3.13) 

ih42(t) = [ qV2(t) + R2(t) + yhO2(t)] tP2(t ) + Kt~l(t ) (3.14) 

where O~(t)=argq~(t)(~= 1,2) and we have introduced heuristically an 
amplitude K to penetrate the layer of insulator. 

Under the substitutions 

tPl(t ) = [Ol(t)]'/Zexp[ iOl(t)] 

~2( t ) = [ 02( t ) ] ' /2exp [ i02( 0 ] 
(3.15) 

where p~(t)= [t~,t(t)[ 2 denotes a total number of Cooper pairs in the region 
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:~ -- 1,2, equations (3.13) and (3.14) yield 

2 
hi(t) = -~ K[ pl( t)p2( t) ] 1/2sin [ 02(0- 01(0] (3.16) 

2 
b2(t) --- - ~ K[Ol(t)O2(t) 1 l/2sin[ 02(t) -- 01(t) ] (3.17) 

K f pz(t) ]1/2 1 

(3.18) 

l 1/2 
02(t)_ .~.K P-~Pl(t) j cos[ 02(t)_ 01(t)] _ Y02(t ) _ hq V2(t)_ ~ R2(t) l  

(3.19) 

Let Oo be a constant total number of Cooper pairs in each supercon- 
ducting region and put 

o,(t)=po+O(t) 

P2( t)= OO--P( t ) (3.20) 

with o(t)<<Oo, then equations (3.16)-(3.19) yield the following equations up 
to the first order in o(t): 

2 
iS(t) = ~ KPosm [ 02( 0 - 0~(t) ] (3.21) 

~COS[ 02(t)- 01(t)]-- ~01(t)-- ~ ~/~l(t)-- ~ RI(/) (3.22) o,( t ) =  

q 1 
/~2(t) = hCOS[ 02(t ) - 0,(t) ] -702( 0 - ~ V2(t ) - ~ R2(t ) (3.23) 

By those equations we find the total current across the junction to be 

J(t) =b(t)  

2 
= -h KoosinO(t) 

=JosinO(t) (3.24) 
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where O(t)= 02( 0 -  01(t ) satisfies a stochastic differential equation 

q 
v(0 + �88 R(0 0 ( t ) =  - vo(t)+ (3.25) 

and variance 

- -  t t 7  t l ' t  
m(t)=~t~ + h  e-r Jo V(u)eV"du 

o(t) = ---G--G (1 - e-2Vt) (3.27) 
yh 2 

Correspondingly the total current across the junction becomes a random 
process 

J( t) = Jo sin O(t) (3.28) 

The observed current (J(t))ob should be an average of equation (3.28), 
which can be calculated as 

(J(t))ob = ~z{J(t)) 

= JoE(sin | 

= Jo ImE (exp io( t )  ) 

= Josin I re(t)]exp[ - o(t)] (3.29) 

where we have used the characteristic function of O(t) 

E (exp iO(t)x) = exp [ - o(t)x 2 + Im(t)x ] (3.30) 

for x E R. Namely, we have the following expression for the observed total 
current across the junction: 

(3.31) 

(3.26) 

with initial condition O(0)--O 0. 
The solution of equation (3.25) is known to be a Gaussian random 

process/9 = O(t) with mean 
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If we put on an AC voltage 

V( t) = V o + v coscot (3.32) 

with v<< V o between two superconductors, the observed current across the 
junction becomes 

qVo(l_e_~,t) (J(t))ob = Jo sin Ooe - ~' + 

+ m qv ] E o  1 7 ..._~_(coscot+~sincot_e-rt) exp - - ~ ( l - e  -2rt) 
72+602 

( [ qV~ 7 qV co . -_~o ~,n Ooe ~+ 7 ~ + ~  ~ (cos~,+~Sl~,-e ~') 

x cos[ Ooe-r' +--~qV~ (l_e-Y,)]}exp[_y~_~(l_e-2rt)] (3.33) 

This expression for the observed superconducting current at a finite 
temperature coincides with the one at absolute zero temperature (Feynman 
et al., 1975; Feynman, 1972) in the limit 7~0 ,  G---~0. For sufficiently large 
t(t>> 1/7  ) we have 

(J(t))ob~J0[ s in~h~  
+ y qv ( 

y2+co2 T coscot 
q o] (o) 

+ Y sin c0t)cos--~ exp -- - ~  

(3.34) 

which has nonvanishing Ces&ro mean 

~) ~,,)~o~ ~ ~osin(~)exp( ~ (3.35) 

Thus we find that the observed AC Josephson current at a finite 
temperature T "~ T c approaches a stationary equilibrium value independent 
of the initial condition and the AC frequency. 

In our approach three free parameters J0, Y, and G are left unspeci- 
fied. To specify them in each practical case as Ford, Kac, and Mazur 
(1965) is still an open problem. 
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33. Viscous Quantum Fluid of Nucleonic Matter. As a practical 
problem, there are two typical examples of dissipative fields; viscous 
quantum fluids of nucleonic matters and the laser electric field in the lossy 
cavity. The former will be studied in this section and the latter in the next 
one by making use of the Schr6dinger-Langevin equation. 

It is known that there exist certain dissipative phenomena in the 
nuclear collective dynamics in which frictions or viscosities of nucleonic 
matters take part (Griffin and Kan, 1976). 

Suppose we are mainly concerned with the long-range behavior of the 
nucleon collective motions, and so may be allowed to adopt the hy- 
drodynamical treatment. Namely, the proton fluid with density pp and 
neutron fluid with On are assumed to interpenetrate under the influence of 
the nuclear binding energy K ( N -  Z)2/A,  where A is the mass number, N 
the neutron number, Z the proton number, and K"~20 MeV. The short- 
range property of the nucleon-nucleon interactions yields the nuclear 
binding energy per nucleon as given by K(p n -pl,)2/po with constant total 
density P0 = Pn + Pp. 

Under those assumptions the proton-neutron density difference p =pp 
-p~ and relative velocity v =u Vn are considered as those of a viscous 
fluid. It is described by the Navier-Stokes equation 

pv + p(v- \V)v = - u 2 \Vp + ~Av (3.36) 

and the equation of continuity 

b + \V. (pv) = 0 (3.37) 

where u= (8KZN/MA2)  1/2 is the sound velocity (M denotes the nucleon 
mass) and 7/the viscosity. As we are interested in the quantum fluctuation 
of the relative density disturbance, it is enough to consider a linearized 
equation 

~3 - -  u 2 A p  - -  pA/~ = 0 (3.38) 

where p denotes the kinematic viscosity. 

Since p(-, t) E L2(R 3, d3r) = L2(S2,d~2) | L2([0 , or r 2dr), it is con- 
venient to expand 0(',  t) in terms of C.N.O.S. ( Ylm | l~o 1 , i.e., 

r n ~  - - I  

(r) 
o(r , t )=  ~ Alm(t) Ylm(O, ep)j l --~ , (3.39) 

l=O m = - I  

where the Ylm'S are spherical harmonics and jl's spherical Bessel functions, 
respectively. 
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We shall take only the nuclear dipole vibration ( l = l , m = 0 )  into 
account, obtaining 

_ u 2 u . (3.40) ~( t )=  --~ a( t ) -  --~ a( t) 

where we have made an abbreviation a(t) for A lo(t ). The constant A 
should be determined by a boundary condition 

j l(nuclear radius/A) -- 0 (3.41) 

As we showed in Section 9, a quantum mechanical behavior of the 
nuclear viscous dipole vibration (3.40) would be well described by the 
Schr6dinger-Langevin equation 

i h ~ t ) ( a , t ) =  h2 32 1 u 2 
2 3a ---S~(a ' t )+ -2(--A) a2~(a't) 

ih p , [ fJ(a,t) ]~(a,t) + ~- ~-f log[ ] 

[ h 2 O 2 1,  u ,2  2 ih ~' l og~(a , t )  
- - - + 2 [ S )  a +-~- 

~(a,t) 
2 3a 2 A ~ a ,  t) 

(3.42) 

It can be seen easily that the minimum uncertainty state around a classical 
viscous dipole vibration ar t ) = a exp iwt, ~o 2 - ( u / A ) 2 - io~p / A z = O, 

i ~bc(a,t)=ho[ a_ac( t )  ]exp { _ ~ [ ~__~ t + dc(t) + ,1_2 (tc(s)2ds] } 

(3.43) 

is a special solution of the Schr6dinger--Langevin equation (3.42), where 
ho@L2(R ) denotes a harmonic oscillator ground state wave function 
(Yasue, 1976; Kan and Griffin, 1974; Skagerstam, 1975). Asymptotic 
behavior of the characteristic state (3.43), 

lim Ibk(', t) - h0(-)[I = 0 (3.44) 
l----~ O0 

also indicates a dissipative property of the Schr6dinger-Langevin equation 
(3.42). 
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3.4 
MKS units 

Lossy Laser. In the case of lossy laser, Maxwell's equations in 

\V.D=0,  D = e 0 E + P  

\V-B=0,  B=/~0 H 

\ V x E = - B ,  \ V x H = I + 0  

and a phenomenological Ohmic loss relation 

(3.45) 

] = o ~: (3.46) 

(3.47) 

give us the following dissipative field equation: 

- AE +/~oOE +/~oe0E = - / ~ o  P 

The laser electric field E is forced by the imposed polarization vector P 
and damped by the Ohmic energy loss in the cavity through equation 
(3.47). Equation (3.47) completely determines the laser electric field in the 
lossy cavity without detailed description of the mechanism of the cavity 
loss. The conventional treatment of such a lossy laser was to describe the 
atoms in a laser quantum mechanically and the electric field (3.47) classi- 
cally (Rogovin and Scully, 1976). Therefore quantum mechanical descrip- 
tion of the laser electric field in the lossy cavity seems to be needed. 1 

In this section, we shall investigate quantum mechanics of the laser 
electric field described by the dissipative field equation (3.47) in much 
detail. 

For simplicity, let us assume the laser electric field is linearly 
polarized, i.e., 

E(r , t )=eE(r , t )  (3.48) 

for some unit vector e. Then equation (3.47) becomes 

= c2AE_ o_o_ E _  1 e. P (3.49) 
E 0 s o 

where c stands for the light velocity. 
Quantum mechanical behavior of the laser electric field (3.49) is 

characterized by the Schrrdinger-Langevin equation, as we have verified 

lA constructive approach to quantum mechanics of the lossy laser from a fundamental point 
of view was given by Hepp and Lieb (1973). They made use of the Heisenberg representa- 
tion, whereas our standpoint, explained here, may be understood as the Sehr/~dinger 
representation. 
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in Sections 8 and 9, 

i h ~ ( E , t ) = l f c d 3 r [ _ h  z 6: ] 6E(r)2 + c: I \VE(r)I 2 f~(E,t) 

Yasue 

iho, ~(E,t) . . . . . . .  
+ 2~e0 l ~  "at tL ' t , 'e  1 fjZre(Oe.f (,,t)a(E,t) 

(3.50) 

To further simplify the analysis, we take a C.N.O.S. { e , } , e N C $ ( E ) ,  
where E c R 3 denotes the cavity region, to be eigenfunctions of the 
Laplacian A. Namely, we have 

Ae,(r) = -- kn2e,(r), n E •, r ~ ~ (3.51) 

where -k2 ' s  are eigenvalues. 
As the quantized electric field E ( r )E*E  (R 3) and the state functional 

f~(E, t) are decomposed as E(r) = *[Ep<na(pn)ep(t)] and f~(E, t) = *[~2n(a (n), t)], 
respectively, we can rewrite equation (3.50) as 

* i h ~ ( a ( n ) " ) = *  --2-p~<n 0ap (~)-------~+---~ap(~)2 f~n(a(~)'t) 

[ iho ~n(a(~),t) 
+ * [ -~e~ l~ ~"(a(")' t)" ~"(a(")' t) 

-1- Le0 *[[ pE<n a(P")ffP(t)a"(a(")'t)] (3.52) 

where we have made the the abbreviation Pp(t)=fep(r)e.P(r,t)d3r. To 
solve the functional differential equation (12.8), it is enough to consider its 
finite-dimensional cross section ("cross section" denotes the finite-dimen- 
sional element inside the asterisk bracket *[ ]). If one puts 

~n(a <n), t) = ]-[ e(a~ n), t) (3.53) 
p<n 

equation (3.52) reduces to the following one-dimensional Schr6dinger- 
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Langevin equations: 

( h2 02 C2kp 2 
- -  - -  , q ( n ) 2 l ~ O . / , ' / ( n )  t) 

ih . ( 4 " ' , 0 =  ~ Oa~.)2 + 2 ~P ]" ' -"  ' 

iho. ~(a~)'t) f~(a~n)'t)+-~ola~")fiP(t)~(a~")'t) + ~log ~(a~.,, 0 

(1 ~<p~<n) 

8 9 5  

A characteristic solution to equation (3.54) is obtained by introducing 
the so-called photon coherent state f]c(ap(");z), z E C (C denotes the com- 
plex plane). The coherent state is defined as an eigenstate of the annihila- 
tion operator (Klauder and Sudarshan, 1968): 

Namely, the coherent state 

~ (  a(") ; o~ ( t) - ~---~p 6~ ( t) )exp ( - - -  

(3.55) 

1 i ) 
2hckp ~ ( t ) 2 -  h [ ap( t)&p( t) + gp( t) ] 

(3.56) 

solves equation (3.54), provided that ap(t) satisfies the classical equation of 
motion 

_o 
~ ( t )  = eo 6~(t)- c2k2po~(t) _ e01 Pp(t) (3.57) 

and gp(t) is related to ap(t) as 

hck~ hc21,~ 2 �89 ~,~( t) + gp( t)= T + ----~-- o~( t) - (3.58) 

Correspondingly, a quantum mechanical behavior of the laser electric 
field in the lossy cavity can be represented by the photon coherent state 

ac(E,t) = *[~c(a("),t)] 

--*I 1~ ~c(a(pn);ap(t)-~-~p(rp(t)) 

(3.54) 
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Therefore we may be allowed to mention that the quantized laser electric 
field in the lossy cavity fluctuates around its classical value Ec(r,t)= 
*[Y~p<nO~(t)ep(r)] with minimum uncertainty. This provides a quantum 
theoretical background to the validity of the conventional semiclassical 
treatment of the lossy laser. 

4. TUNNEL EFFECT IN NON-ABELIAN GAUGE THEORY 

Originated from Polyakov's (1975) work, several authors (Callen et al., 
1976, 1977; 't Hooft, 1976; Jackiw and Rebbi, 1976) have investigated a 
Euclidean path integral description of vacuum tunneling phenomena in 
non-Abelian gauge field theory. They suggested that a Euclidean path 
integral 

f exp(-S~--~ SE[A]+gauge-fixJngterm)SA 

1 3 3 
_ -  SE[A] -4 E E a a 4 

a = l  /x,I, = 0  " 

provides a powerful tool to explore the structure of gauge theory vacuum. 
Classical Euclidean solutions, which minimize the Euclidean action SE[A ], 
were shown to manifest tunneling phenomena between topologically in- 
equivalent classical vacua within the realm of the WKB approximation. 

Although application of such a Euclidean technique to the problem of 
vacuum instability has been put into practice successfully (Coleman, 1977; 
Callan and Coleman, 1977; Pak, 1977; Creutz and Tudron, 1977; Banks et 
al., 1973; Bitar and Chang, 1978; Gildener and Patrascioiu, 1977; Jackiw, 
1977), there have been no rigorous arguments which explain why the 
Euclidean path integral is relevant for describing the vacuum tunneling 
phenomena in the physical space-time (i.e., Minkowski space), except a 
heuristic one based on the WKB method ('t Hooft, 1976). 

In this chapter, the problem of vacuum tunneling phenomena such as 
the quantum decay process of metastable vacuum states in SU(2) 
Yang-Mills theory will be investigated from a probability theoretical point 
of view. The mechanism of the vacuum tunneling can be illustrated within 
the realm of the stochastic quantization. 

The main sources for this chapter were the present author's papers 
(Yasue, 1978c, d). 
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4.1. Euclidean Path Integral Description o f  the Vacuum Tunneling 
Phenomena. In classical field theory, the SU(2) Yang--Mills field A s is 
nothing but a SU(2) Lie module over the space-time. Since As(x, t) belongs 
to the Lie algebra of SU(2) for each space-time point (x,t), it has an 
isovector expression 

3 

As(x, t )= • A ; ( x , t ) T  ~ (4.1) 
a = l  

where (Ta}3a=l is a basis of the Lie algebra of SU(2). 
Dynamics of the Yang-Mills field is given by a Lagrangean 

1 3 3 

Z' fF~ a3 L=--~ Y. ,Gdx  
a = l  #,,v = 0 

(4.2) 

where 

3 

F a _ a a e a b c a  b A  c (4.3) s,.- 3sA. - 3,.As + ~" s--. 
b , c =  I 

is a field strength tensor. (Latin letters a, b, c denote isovector indices and 
i , j , k  denote space indices. Greek letters /~, ~ denote space-time indices, 
and the terms in the primed sum for # ,p= 1,2,3 are taken with reversed 
sign.) In terms of "electromagnetic" fields 

_ _  a 1 3 

E~ - F~i, B/~ = -~ '~ ev~Fj~ (4.4) 
k , j =  1 

the Lagrangean (4.2) can be written as 

1 ~ f(E:E:_B:B:)d3 x (4.5) 
L = ~  i ,a=l 

Hereafter, to avoid the complexity of the Coulomb gauge (Gribov, 
1977; Hirayama et al., 1978) we shall work in A0=0 gauge. Then E/~ 
becomes identical with a - "~ ~ "~ 3oA i --A i , and B~ does not contain A;.  In this 
gauge Ai~'s are dynamical variables of the Yang-Mills field. The 
Lagrangean (4.5) becomes 

1 ~. f(Ai'A,-B,B,)d x (4.6) L = - ~  "a "a ~ a 3 
.g 

i , a  = 1 " 
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which gives us the following equation of motion for Aft: 

Ai"a____ ~Ai a8 21 f (4.7) 

(From now on, the summation convention for all repeated Latin "indices is 
assumed.) To quantize the Yang-Mills field, it is convenient to adopt the 
stochastic quantization procedure. This is because not only the structure of 
the vacuum state but also the mechanism of the vacuum tunneling of the 
quantized Yang-Mills field can be illustrated within the realm of the 
stochastic quantization. 

All the quantization procedures are the same as in Section 8, provided 
that the field equation in the generalized sense (2.31) is replaced by the 
following one: 

l f  Bfa y 
-1 8Aa(0 2 

(4.8) 

The quantized Yang-Mills field A i a ( t ) ,  - -  oo < t <  o0, is, of course, a 
random process in *E(• 3) of the aforementioned type. The resulting 
Schr6dinger equation is 

6Aa6A------Ta + BiaO a ~(A, t) (4.9) 

where A is an abbreviation for {A/~ 3 i , a=  l" 

We shall investigate a structure of the vacuum state by making use of 
a probability theoretical framework of the stochastic quantization in what 
follows. 

Removing the infinite zero-point energy, we define a quantum theo- 
retical vacuum state of the Yang-Mills theory by a ground state wave 
functional ~2(A) on *$ (R 3) which satisfies the Schr6dinger equation 

dax 2 8AiSh---- ~ -b 2 BiaBa ~(A)--0 (4.10) 

In classical field theory, vacuum states of the Yang-Mills theory are 
classical field configurations 'Aft(x) with zero potential energy 

I f  B~('A)B~('A) d3x = 0 (4.11) 
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They are pure gauge fields 

' A  i = ' g -  lOi' g E SU(2) Lie module on R 3 (4.12) 

where 'g's are unitary matrices such that l imlxj~ 'g(x ) = I. As limrxl__,o~'A(x ) 
= 0, we can consider the pure gauge fields 'A continuous mappings from 
R3 to SU(2). Since g~3 ~ S 3 (three-dimensional sphere) and also S U(2) ------- S 3, 
'A's can be classified by the third Homotopy group of $3: 

~r3(S 3) ~ Z (integers) (4.13) 

with respect to a fixed point or E R3. Namely, classical vacuum states of 
the Yang-Mills theory consist of an infinite number of homotopy classes 
of $3: 

[ ' A i = ' g - 1 3 i ' g ] , [ " A i = " g - ' ~ i " g ]  . . . . .  (4.14) 

where [. ] denotes a homotopy class to which the pure gauge field inside the 
bracket belongs. Two pure gauge fields which can be joined with each 
other by a continuous gauge transformation in the manifold of SU(2) Lie 
module should be understood as the same classical vacuum state (Jackiw, 
1977). 

In order to classify the homotopy classes, it is convenient to introduce 
the Pontryagin index 

--1 r,J~ 1 f Tr(A" J&)d3x (4.15) q = _ 24~r---- S 

For  pure gauge fields, q is an integer which belongs to the homotopy group 
% ( S 3 ) ~  Z. Then the classical vacuum states (4.14) can be rearranged as 

([qAi=qg 'o;qg])q z (4.16) 

where qA i is a pure gauge field with Pontryagin index q. 
In quantum field theory the classical vacuum states (4.16) are 

rendered unstable by the tunnel effect; they are metastable vacuum states. 
Let us investigate the vacuum tunneling phenomena between metasta- 

ble vacuum states qAi 's  from a probability theoretical point of view. 
In the conventional framework of quantum field theory, the wave 

functional f~(A) does not teach us the details of the vacuum tunneling. One 
can describe the tunneling behavior of the quantized Yang-Mills field only 
in the semiclassical limit, i.e., within the realm of the WKB approximation. 
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In the probability theoretical framework of the stochastic quantization, on 
the contrary, the behavior of the quantized Yang-Mills field in the 
vacuum state ~(A) is known to be a random process Aft(t) in *E (N a) as we 
have seen in Section 8. By equations (1.41), (2.33), and (2.34) we find that 
the random process Af t ( t ) , - co  < t <  ~ ,  is a solution of the stochastic 
differential equation 

daft(t)= Uft(A(t))dt+dWft(t)  (4.17) 

where the transformation U/a(-) on *E (R 3) is related with the vacuum state 
wave functional by 

Uft(A) =h 6~ft loga(A ) (4.18) 

and Wft(t) denotes a Wiener process in *E(R 3) with diffusion constant 
h/2. Notice that the stochastic differential equation (4.17) is an abbrevia- 
tion for the relation 

l a 
A f t ( O - A f t ( s ) =  ( U~ (A(u))du+ wia(t) - Wft(s), t>s  (4.19) 

as 

Therefore, a transition probability law of the random process 
Aft(t), - ~ < t <  or manifests the tunneling process of the quantized 
vacuum field configuration between metastable vacuum states qA i. The 
transition probability law is given by an elementary solution Q[A; s['A; u] 
of the Fokker-Planck equation (2.34). Namely, we have 

o-; Q = - f d3x [ Uft(A)Q] + d3x 6Aft6Aft Q (4.20) 

and 

lira Q[ A; s I'A; u] = 8 ( A -  'A) 
s~u 

(4.21) 

where 8(.) denotes a delta functional on *E (Ra). 
To illustrate the mechanism of the vacuum tunneling, one needs to 

solve the C~/uchy problem equations (4.20) and (4.21). This can be done by 
introducing a relative transition law F[A; s['A; u] by 

Q[ A; sl'A; u] = a(A)F[ A; sl'A; u ] a ( ' a ) - I  (4.22) 
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Equation (4.20) is transformed into a self-adjoint form 

-- h F =  d3x  2 ~A i ~A----~ -t- -~ BiaB a F ( 4 . 2 3 )  

and the initial condition (4.21) into 

lim FFA; sl'A; u] = 6 ( A - ' A )  
S~U 

(4.24) 

by the substitution (4.22). Equation (4.23) is nothing but a Euclidean 
analog of the Schr6dinger equation (4.9). The Feyuman-Kac  formula 
(1.18) and (1.19) asserts that a solution to the Cauchy problem (4.23) and 
(4.24) is given by a Wiener integral 

F[ A; s['A; u] = f e x p  { -- ~ 2Sdtf d3xBf~[ A ( t ) ] B : [  A ( t ) ] }  

>< 8[A(s) - A ]  * ~t~'A[ 8A(-) ] (4.25) 

Here *~uw"A denotes a nonstandard Wiener measure with diffusion con- 
stant h/2 defined on the totality of continuous paths A(-) in *E(R 3) 
starting from 'A at t = u. Correspondingly the transition probability law of 
the random process Aa(t), - oe < t  < oe, is found to be 

Q[A;sI,A;u]= f~(A) a('A) fexp{ - 1  s 3 a a f. d, f d x B  i [A(t)]B i [A(t)] ) 
-A] /~w [6A(-)] • 6[A(s) . .,'A (4.26) 

A tunneling probability of the quantized vacuum field configuration 
between metastable vacuum states qA i and PA i, q--/=p, from a remote past to 
a remote future is Q[PA; oe [qA; -o  e]. Noticing that Q[PA; oe[qA; -o  e] 
would coincide with the conventional expression of the tunneling probabil- 
ity, i.e., the ratio I~2(PA)/f~(qA)[ 2, we find a vacuum tunneling amplitude of 
the quantized Yang-Mills  field in A o = 0 gauge to be 

Aa~_p [ PA; ~ [qA; -- oo ] = f~(PA)/~(qA) 

= fexp  { - �89 f_L ,f d3xBfl[A(t)]B/~[ A(t) ] } 

>< ~[ A(c~) - ' A ] * / t w  ~176 8A(-) ] (4.27) 
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If we introduce a functional path integral expression of the Wiener integral 

f~[A(~)--eAl*/z=~'qA[ 6 A ( - ) ]  �9 �9 �9 

=N" fq;Aexp[ - ~h f?~dtf d3x~l:(t)~i'(t) ]SA(. )..- 

(4.28) 

where 8A(.) means to take a functional path integral and N E *R is a 
normalization constant, equation (4.27) becomes 

o o i q A ; - - o o  ] =  N .  fqAAeXp ( _ l  oo -i g d' f d x[ 2 2:('),i:(') Amp[PA; 

-#-~Bia(A(t))Bia(A(t))]}~A( " ) (4.29) 

In terms of the field strength tensor F~., this can be written as 

Amp[PA;=lqA;-oo]=N. fqpA ( 1 3 3  fF: ) A exp -- ~ ~] ~] ,F2~d4x 8A(.) 
a =  1 /x ,v=0 ~ 

(4.30) 

which provides a Euclidean path integral description of vacuum tunneling 
phenomena in A 0 = 0 gauge. 

Thus the validity of the Euclidean path integral description of the 
vacuum tunneling phenomena in SU(2) Yang-Mills theory has been 
proved from the probability theoretical point of view. 

4.2. Most Probable Tunneling Path and Instanton. We found the 
vacuum tunneling amplitude of the quantized Yang-Mills field in Ao=O 
gauge be given by the Wiener integral (4.27). This can be written also in a 
functional path integral form (4.29). However we can no longer utilize 
equation (4.29) to derive a rigorous probability theoretical characterization 
of instantons since the functional path integral expression of the Wiener 
measure (4.28) has only a formal meaning. 

Let us start with the transition probability law of the quantized 
Yang-Mills field Aa(t),-oe<t<oe, in the vacuum state (4.26). It is 
convenient to approximate the Wiener integral in equation (4.26) by taking 
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only an n-tuple functional integral account: 

f 8[ A ( s ) -  A 3"/L~'A [ 8A(" ) 3 ' ' "  ~ y" f exp[ 

• exp [ 
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l lA-&II  ~ 
�9 . . 

2 ( s -  t.)h 
IIAa- 'AH 2 ] 
2(-7"17 U~)h- J 8A"" " " 8A1" " " 

(4.31) 

with s>t n > . - .  > t  1 >u  (Yasue. 1978e). where 

],A,l=[ f Af(x)Af(x)d3xl'/2 

is a norm on *E (R 3) and 7 ~ * • an infinitesimal constant. Then equation 
(4.26) becomes 

E i (AA l ] O A, Q[A;,I'A;u]--~ "vfexp -..exp 2(s-t.)h 2(q-u)h 

[ AI+ 'A  \112 
+ B ~ )  .(tl-u) l}SAn...tSAl 

a(A) ( 1 r I]A_A,,[ [ 2+ 
f2('A) j e x p  ~ s -  t. 

[(A1.; 
6An.-" 6A1. (4.32) 

Now what is left for us is to replace each functional integration in 
equation (4.32) by taking the maximum value in the exponent, regarding 
the fact that the most probable value of a Gaussian distribution might 
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dominate the Gaussian integral, obtaining 

Yasue 

Q[ A; sl'A; u] --~ [ a (A) /a ( 'A)  ] 

�9 yexp{ i-~-h [(liAs~At;ll)2+ B ( ~  ~---~) 2]-(s-t~) . . . .  

[(A1A) ) 2+ B .(tl-u) 1 

2h t I -- U max 

(4.33) 

where [']max means to take a maximum value (Yasue, 1978e). Passing to 
the limit n~oe, we finally obtain an approximate expression of the 
transition probability law of the quantized vacuum field configuration 
Aft(t), - oo < t <  oe, as follows: 

Q[A;sI'A;u]~ [ ~(----~-~ ]"l'exp[ - ~ - f ~ ( A )  l fSdtfdax(�89189 
(4.34) 

Correspondingly the vacuum tunneling amplitude (4.27) has an approxima- 
tive expression 

[l= 3(1 ol )] 
& m p [ P A ;  o o i q A ; - o o  ] - - - y . e x p  - ~  f_ dff d x ~AirAi -it- ~ BiaB a 

m a x  

(4.35) 

This is the well-known WKB prescription (Coleman, 1977). 
Let us introduce a notion of the most probable tunneling path A/a(x, t). 

It is a classical Euclidean Yang-Mills field which minimizes the Euclidean 
action 

1 3 3 
= ~ f ~, ~_~ F~ F~ dax (4.36) 

a = l  /~,v=0 
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under the boundary conditions 

lim ~a(x, t) =PA/(x) 
I ----) O~ 

lim f~(x ,  t) = qAf(x) 
t---~- oo 

(4.37) 

(4.38) 

Then equation (4.35) becomes 

[ l f ( 2  "-a=a 1 /~5') ] A m p [ P A ; ~ l q A ; - o o ] ~ ' ~ y ' e x p  - ~  AirAi + ~ . ~  dtd3x 

1 S (4.39) 

in non- This expression was known as "Onsager-Machlup formula" 
equilibrium statistical physics (Yasue, 1978e). 

Thus we have found that the instanton, associated with the Euclidean 
action-minimum classical field configuration, manifests the most probable 
tunneling path of the quantized Yang-Mills  field between metastable 
vacuum states. 

4.3 Quantum Decay Process of Metastable Vacuum States. To 
illustrate the mechanism of the vacuum tunneling more clearly, we shall 
investigate the quantum decay process of metastable vacuum states by 
solving the stochastic differential equation (4.17) explicitly. It is convenient 
to rewrite equation (4.17) in terms of the white noise (Hida, 1970, 1975b); 
obtaining 

Af(x,t) = U/~[A(x,t) ] + Z/~(x, t) (4.40) 

where zia(x, t)~- w / a ( x ,  t) denotes a Gaussian white noise with mean 0 and 
covariance 

~: ( Za(x,  t )Z / (y ,  u )  } - -  1}8 ab~o.~( t -- U)~ 3(X - -  y )  (4.41) 

This is simply because one can consider the problem of the quantum decay 
process in a concrete mathematical framework of distribution theory. 

As the transformation Uy(.) in *E(R 3) is related with the vacuum 
state wave functional f~(A) by equation (4.18), first of all, we have to 
construct a physically relevant vacuum state which is invariant under 
gauge transformations. It is known to be a coherent superposition of 
Gaussian functionals peaked around each metastable vacuum state qAg(x) 
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(Callan et al., 1976; Jackiw and Rebbi, 1976; Jackiw, 1977). Such a 
gauge-invariant vacuum state wave functional is parametrized by an 
angle 9 

f~o(A) = ~, eiqad~( A -  qA) (4.42) 
qEz 

with 

1 a a 3 
(4.43) 

where o~ is a positive linear operator chosen in a way that dP,~(A-qA) is a 
local solution of the Schr6dinger equation (4.10), that is, a solution to a 
harmonized Schr6dinger equation around qAi(x); o~ = (-~i2) 1/2. The gauge- 
invariant vacuum state of the quantized Yang-Mills field is a Bloch state 
(4.42). 

To describe a quantum decay process of the metastable vacuum state 
qAi(x ), we shall approximate equation (4.42) by taking only a Gaussian 
functional peaked around qAi(x ) into account, obtaining 

f]a (A) ~ e iqO f~ (A - qA) (4.44) 

Then equation (4.40) becomes 

Aia(x, t) = 0)[ A/a(x, t) - qha(X) ] -1- zia(x, t) (4.45) 

which is a linear inhomogeneous stochastic differential equation of white 
noise type (Yasue, 1978f). A solution of equation (4.45) under the initial 
condition Aia(x,O)=qAia(x) manifests the quantum decay process of the 
metastable vacuum state qA ~ *~ (R3). 

Such a solution to equation (4.45) can be obtained by introducing a 
contraction semigroup on *E (R3): 

T(t) = exp( - o~t) ~ ~bs~/, t > 0 (4.46) 

Namely, 

Aa(X, t) = qAa(x) -I- fo tT( t  -- u)Za(X,  u) du (4.47) 

solves equation (4.45) with the initial condition (Hida and Streit, 1977). 
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Equation (4.47) uniquely determines a distribution valued Gaussian pro- 
cess AT(x, t) with mean 

E{A~(x,t)} = qA~(x) (4.48) 

and covariance 

F { f [ Aia(x)- ~2 (Aa(x) } ]La(x)d4x f [  A ? ( y ) -  ~ { A?(y)  } ]h?(y)d4y ) 

= f z a ( x ) ( -  m4) --lhfl(x)d4x 

(4.49) 

where f f  and hi a belong to $(R4), A _~-~4 ~2 is a four-dimensional 4 -- ~'~/t =OVp 
Laplacian, and we have made an abbreviation x- - (x ,  t). This is nothing but 
a Eucl idean-Markov field (Nelson, 1973) of Gaussian type (Yasue, 1978f). 

Thus we have found, within the realm of the stochastic quantization, 
that the quantum decay process of the metastable vacuum state qAi(x ) can 
be represented by the Eucl idean-Markov field (4.47). Needless to say, the 
integral that appears in the right-hand side of equation (4.49) is of infrared 
divergent nature. In other words, an object that manifests the quantum 
decay process of the metastable vacuum state has a long-range correlation 
such as the Coulomb gas. We may be allowed to consider the object as a 
quantum field theoretical version of the instanton which was originally 
introduced as an indication of the vacuum tunneling phenomena 
(Polyakov, 1975). The Eucl idean-Markov field (4.47) may play an im- 
portant role in quark confinement, as was suggested by Polyakov (1975). 

.4.4. Spatially Homogeneous o Model. So far we have ignored cou- 
plings of fermions to the Yang-Mills field. In this section, to see the effect 
of the presence of fermion fields to the gauge field, we shall investigate a 
spatially homogeneous o model from the probability theoretical point of 
view. 

Consider a o model described by a Lagrangean density 

I ] = ~ ih E y~O~ --go ~/+ -~ (3p.tlr) 2 -  (0 2 -  1.32) 2 
l ~=o t,=o 

(4.50) 

where g, ?t, and v are constants and "~'s Dirac matrices. The Dirac spinor 
and the real scalar o represent a fermion field and a boson field interacting 
with each other through the Yukawa coupling scheme (4.50). ( ~  denotes 



908 Yasue 

the covariant adjoint.) Field equations obtained from (4.50) are 

ih 7~3 . -go  ~ = 0  (4.51) 
0 

3 
h2 E '  0~~ +X~ ~  v2) = - g @  (4.52) 

/ t=0  

We shall restrict ourselves to the spatially homogeneous case in which 
~,(x,t)=-qJ(t) and o(x , t )=o( t )  hold. Then equations (4.51) and (4.52) be- 
come 

ih(~( t) = gyoo( t)qJ( t) (4.53) 

v2] - ~z t~(t)~(t) (4.54) - o ( t ) [ o ( t )  2 -  

Equation (4.53) can be solved in a product integral form (Nelson, 1969) 

t 

+( t )=  ~I [1-ig'goO(s)dsl+(O) (4.55) 
s = 0  

or a more familiar T-product form 

[ ;0 t ] •(t) = Texp - igTo o(s)ds qJ(0) (4.56) 

which yields a conservation law for the fermion number 

4(t)+(t)  = %(0) qJ(0) (4.57) 

Thus we find that the spatially homogeneous o model is nothing but an 
anharmonic oscillator described by an equation of motion 

6 (0  = - X--zo(t)[ o ( t )2 -  v 2 ] - g 4(0)+(0) (4.58) 
h~ L 

Quantum theoretical vacuum state of such an anharmonic oscillator 
as (4.58) is given by a wave function u(o)~L2(R)  which satisfies the 
Schr6dinger equation z 

[ h220o 202 +~--~--(~176176 2 h ] (4.59) 

2jona-Lasinio (1978) investigated the vacuum tunneling of this type also in the framework of 
stochastic quantization. 
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The potential V(o) =),(o 2 -  v2)2/4h 2 + g~(O)~p(O)o/h 2 is bounded from be- 
low and has an absolute minimum o = - v  and a relative minimum a = v. 

Now we shall calculate the decay rate of the metastable vacuum o = v 
within the realm of our probability theoretical formulation. As we have 
seen in Section 7, quantized motion of the vacuum field configuration is an 
($3) process of the aforementioned type E ( t ) , - ~  <t < ~:  

D ~] ( t ) =  b( E (t)) (4.630 

~ ( t ) - - ~ . ( t ' ) = f f b ( E ( s ) ) d s + W ( t ) - - W ( t '  ) (4.61) 

where b(o)=hOlogu(o)/Oo and W(t) , -oo < t < o o ,  is a Wiener process 
with diffusion constant h/2. The ($3)process  Y ~ ( t ) , - ~ < t < ~ ,  has a 
stationary probability distribution u(o) 2. Decay rate of the metastable 
vacuum state can be calculated by evaluating a transition probability law 
of the random process E(t), - ~ < t <  oo. 

The transition probability density p(o, tlo', t'), with t > t ' ,  of the process 
Y . ( t ) , - ~ < t < ~ ,  is known to be an elementary solution of the 
Fokker-Planck equation 

3 3 h 0 2 
-~ P = - -~o [ b( o)p ] + -~ -~oz p (4.62) 

Introducing a relative transition probability density f(o, tta', t') by 

p(o, tic,  u) = u(o)f(o, tlo', t ' )u(o')- '  (4.63) 

one can transform equation (4.62) into a self-adjoint form 

h' 2 1 - -  + V(o) -  E f (4.64) - h-3-~f= 2 002 

The decay rate of the metastable vacuum state o = v is given by investigat- 
ing an asymptotic behavior of the transition probability law p ( - v ,  tlv, O ) 
for large t (Langer, 1967). 

An elementary solution of equation (4.64) is given by a Wiener 
integral 

f(a, tio',t')=exp[ E(t-t')h ] f e x p [ -  f t . tv ( , (s ) )ds lh]8[ , ( t ) -a]  i~',~ 

(4.65) 
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where ~"~  denotes a Wiener measure with diffusion constant h/2 and 
starting point (t',o'). Thus the transition probability density of the ($3) 
process Y,(t), - c~ <t < ~ , p ( -  v, tlv, 0) can be written as 

p ( -  v, trv, o) 

__ U(--V). e xp (g - t / h )  f exp[ - fot V(,(s))ds/h ]~[ ' ( t ) +  
u(v) 

v ] / ~ ( d ~ )  (4.66) 

Now what is left for us is to compute the Wiener integral (4.66) and to 
obtain the tunneling probability. Let { un(o)),~__0 C Lz(ff~)[Uo(O) = u(o)  and 
E0= E, of course] be a C.N.O.S. of eigenfunctions of the Schr6dinger 
equation 

h 2 
- - -  un"(o) + V(o)u,(o) = E,u,(o) (4.67) 

2 

n = 0, 1,. �9 �9 where the prime means to take a derivative with respect to o. 
Then a tunneling probability between metastable vacua o = v and o = - v  
becomes 

p ( -  v, tlv, O) = u ( -  v).  ~ u , ( -  v)un(v)exp[ - (En - E) t /h]  (4.68) 
u(v) n=O 

Since equation (4.68) has an asymptotic expression for large t, 

( Ul(-V)U'(V) [ ( E , - E ) t ] )  (4.69) 
p ( - v , t [ v , O ) ~ u ( - v )  2 1+ u ( - v ) u ( v ) . e x p  h 

the decay rate of the metastable vacuum state o = - v  is found to be 
(E 1 - E ) / h  (Gildener and Patrascioiu, 1977). 

The level splitting, i.e., the decay rate, can be computed immediately 
with the use of the WKB prescription. 

From a perturbation theoretical view point, the presence of the 
fermion term g ~ o / h  2 does not cause any first-order effect to the decay 
rate (E l - E)/h,  because the unperturbed potential ?~(o 2 - vZ)2/4h 2 is sym- 
metric and the fermion term skew symmetric. 

5. EPILOGUE 

We have made a long journey around the realm of the stochastic 
quantization. Since we have now no "vacation" left for us at all, we must 
stop our "sightseeing" without investigating two large parts of the subject 
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matter of quantum theory: spin and relativity. To close this paper, we shall 
present a "guide book"  to those parts for the readers. 

During the course of this lecture (June, 1978), we received a couple of 
nice works due to Dohrn and Guerra  (1977, 1978) in which the stochastic 
quantization was generalized to include quantum mechanics on 
Riemannian manifold. They made use of the notion of stochastic parallel 
displacement of tensors, introduced by It6 (1976), with a geodesic correc- 
tion. Such a generalization may allow us to incorporate the spin freedoms 
into quantum mechanics from our probability theoretical point of view 
(Dankel, 1970; Caubet, 1976). Following It6 (1976), a covariant ($3) 
process on an n-dimensional Riemannian manifold (9]'C,g) can be con- 

O0 n structed with the use of a stochastic moving frame (Ea(t), - oe <t  < } a= 1 
C T ~  (tangent bundle of gYt) attached to the process X ( t ) , - o c  <t  < oe. 
They are solutions to the covariant stochastic differential equations of 
Fisk-Stratonovich type 

dBi( t) = E~( t)o dW~( t) 

dXi(  t) = b i ( x (  t), t) dt + dB i( t) 

dE:(t)  = - r}k(x(t))E2(t)o dXJ(O + �89 Rj (X( t ) )Ej (O at 

where (Wa(t)}~= 0, - o e  < t  < oe, is a Wiener process in R n with diffusion 
constant h/2 ,  b ( . , t ) ~  T ~ ,  I '~ ' s  connection coefficients, and R] E T]gX 
curvature tensor, respectively. The Fisk-Stratonovich product  o is defined 

Z(  t) o dX(  t) = Z (  t) dX(  t) + �89 dZ(  T)  dX(  t ) 

(Of course, this is an abbreviation for its stochastic integral form.) 
A generalization to including relativistic quantum mechanics needs a 

construction of an (S3) process on a four-dimensional pseudo-Riemannian 
manifold [or on the Minkowski space M = (R 4, ( +  - - - ) ) ]  with the use of 
a proper-time parameter  ~'. Since positive indefiniteness of the metric 
tensor does not allow us to introduce such a "comnmtat ive"  stochastic 
moving frame as Ea(t)'s, we are apt to generalize it to "noncommuta t ive"  
one such as the ~, matrices (Yasue, 1977b). Relativistic extension was also 
obtained by Lehr and Park (1977) in utilizing the notion of elementary 
time intervals. 

We conclude this long journey with the following speculations. 
The stochastic quantization procedure seems to present a powerful 

technique in investigating the complicated structure of the gauge theory 
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vacuum. Evidently equations (4.17) and'('4.20), which manifest the vacuum 
structure, were of the same form as those of dynamical critical phenomena 
in nonequilibrium statistical mechanics. Namely, the transition probability 
law Q of the quantized vacuum field configuration plays a role of "order 
parameter." One may utilize equations (4.17) and (4.20) in analyzing the 
phase transition of the gauge theory vacuum such as the quark confine- 
ment. 
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